Closing today at 11 pm: HW_1A,1B,1C Closing next Wed: HW_2A,2B,2C

Entry Task: Use the FTOC (Part 2), to evaluate each definite integral below:

Very Quick review of foundations: Definition of Definite Integral: If $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$, then

$$
\int_{0}^{4} e^{x}+\sqrt{x^{3}} d x
$$

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

$=$ "signed" area between $f(x)$ and the x -axis from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$.

FTOC(1): Areas are antiderivatives!

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

FTOC(2): $F(x)$ any antiderivative of $f(x)$,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

5.4 The Indefinite Integral and

Net/Total Change

Def' n : An indefinite integral of $f(x)$ is defined to be the general antiderivative of $f(x)$. And we write

$$
\int f(x) d x=F(x)+C
$$

where $F(x)$ is one antiderivative of $f(x)$.

Net Change and Total Change

Assume an object is moving along a
straight line (up/down or left/right).
Let $\mathrm{s}(\mathrm{t})=$ `location of object at time t^{\prime}
$v(t)=$ velocity of an object at time t^{\prime}
positive $v(t)$ means moving up/right
negative $v(t)$ means moving down/left

The FTOC (part 2) says

$$
\int_{a}^{b} v(t) d t=s(b)-s(a)
$$

i.e. 'integral of rate of change of dist.'
= 'net change in distance'

Displacement $=$ net change in distance

$$
=\int_{a}^{b} v(t) d t=s(b)-s(a)
$$

Total Distance traveled by the object

$$
=\int_{a}^{b}|v(t)| d t
$$

This is just the difference between where To compute 'total distance' follow these the object was standing at $t=a$ and where it was standing at $t=b$.
steps:

1. Solve $v(t)=0$.
(This tells you places where $\mathrm{v}(\mathrm{t}$)
might switch between positive and negative)
2.Break up the problem into separate integrals at the places from step 1.
2. Evaluate each integral (without the absolute values) and add them up as positive numbers in the end.
